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Chapter 1

Introduction and Examples for inverse
problems
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Chapter 2

Mathematical foundations

In this chapter, we rehearse mathematical basic knowledge and borrow a lot of stuff
from other lectures in functional analysis.

2.1 About Linear Operators

Definition 2.1
Let X,Y normed vector spaces (usually Banach or Hilbert), and K : X 7→ Y . Let
y ∈ Y . The problem:

Find x ∈ X such that Kx = y

is properly posed or well–posed, iff

1. ∀ y ∈ Y ∃x ∈ X : Kx = y (solvability)

2. ∀ y ∈ Y ∃!x ∈ X : Kx = y (uniqueness)

3. K−1 : Y 7→ X is continuous w.r.t. the norms in X, Y (continuity).

If one of the conditions is violated, the problem is improperly posed or ill–posed.

• Throughout the lecture, K will be linear (or affine linear).

• Usually, X and Y are∞–dimensional function spaces, so our reference lec-
ture is functional analysis.

Reminder: The operator norm of K is defined by

||K||X,Y := sup
x∈X,x 6=0

||Kx||Y
||x||X

= sup
x∈X,||x||X=1

||Kx||Y .
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Reminder: K is continuous iff ||K|| <∞.

Remark: Let x ∈ X. Let x̃ ∈ X an approximation to x. Then

||Kx̃−Kx|| ≤ ||K|| ||x̃− x||, (2.1)

so the maximum error amplification factor when applying K is ||K||.

Remark 2.2
The continuity of an operator depends on the norms in X and Y .

Example: Take K : C1[0, 1] 7→ C0[0, 1], Kf := f ′.
Then K is discontinuous w.r.t. (C1([0, 1]), || · ||∞).
K is continuous w.r.t. (C1([0, 1]), ||f ||∞ + ||f ′||∞).

Example: Take any inverse problem for which an inverse operator exists. With the
notation from 2.1: Define the norm in Y by

|||y||| := ||y||Y + ||K−1y||X .

Then K is continuous. However, this does not help since in practice the norms are
fixed and given by the application.

Remark: Let dimX = ∞, and Y 6= {0}. Let 0 6= y ∈ Y and (xn) an infinite linearly
independent system. Define Kxn := ny and extend it to a linear operator. Then K
is discontinuous.

Remark: Let dimX <∞. Then all linear operators are continuous.

Definition 2.3
Let X, Y function spaces, K : X 7→ Y . Assume that K is discontinuous. K is
said to be ill–posed of the order m, if K becomes well–posed when adding norms
of derivatives of order up tom to the norm in Y and ill-posed when adding norms of
derivatives of order up to m− 1.

Remark: The higher the order of ill–posedness, the harder it is to solve the inverse
problem.

Remark: The inverse problem of integration (differentiation) is ill–posed of order
one, differentiation of order m is ill–posed of order m.

Remark: The inverse problem for the diffusion equation never becomes continuous
by adding derivatives, it has order∞.

Remark: The inverse problem of the Radon Transform has order 1
2
, so it is easier to

solve than differentiation of order one.
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This is an off–hand definition. We will give a better definition in terms of the sin-
gular values of an operator later. And we will have to define differentiation of order
1
2
.

Definition 2.4
Let Σ ⊂ Rn, Ω ⊂ Rm measurable and open. Let k : Σ × Ω 7→ R measurable. For
u : Ω 7→ R, x ∈ Σ we define

(Ku)(x) :=

∫
Ω

k(x, y)u(y)dy.

K is an operator from a function space over Ω to a function space over Σ and is
called integral operator.

Theorem 2.5
Let Σ ⊂ Rn, Ω ⊂ Rm bounded, k ∈ L2(Σ × Ω). Then K : L2(Σ) 7→ L2(Ω) is
continuous.

Reminder: Let X, Y Hilbertspaces, K : X 7→ Y linear and continuous. Then there
exists a continuous linear adjoint operatorK∗ : Y 7→ X with the property that

(Kx, y)Y = (x,K∗y)X ∀x ∈ X, y ∈ Y.

Reminder: Let M a linear subspace of X. Denote by M the closure of M . Let

M⊥ = {x ∈ X : (x, y) = 0∀y ∈ X}.

Then X = M ⊕M⊥, so for all x ∈ X we have x = x0 + x1 with x0 ∈ M , x1 ∈ M⊥.
||x − x0|| ≤ ||x − y|| ∀y ∈ M . The mapping P from x to x0 is the orthogonal
projection of x onto M .

Definition 2.6
Let f , g functions on Rn. The convolution of f and g is a function of Rn and defined
as

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy

Lemma 2.7
For f ∈ L1, g ∈ L1 f ∗ g is well–defined and is in L1. For fixed f or g the convolution
is continuous from L1 7→ L1.

Remark: Not all inverse problems are ill–posed. Some examples:

Definition 2.8
Let f in the Schwartz–space S. Then the Hilbert transform is defined as

(H(f))(x) =
1

π
=

∫
R

f(y)

x− y
dy.
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The Hilbert transform is a continuous operator and its inverse is also continuous.

Remark: For the Fourier Transform, we have ||f ||L2 = ||f̂ ||L2, which implies that the
Fourier Transform and its Inverse are continuous w.r.t. L2.

Remark: Let K : X 7→ Y , ||K|| < 1. Then (I −K) is continuous, invertible and its
inverse is continuous (idea of proof: Neumann–series).

2.2 Least squares and minimum norm solution

Definition 2.9
Let K : X 7→ Y , y ∈ Y . Assume we are solving the inverse problem

Ku = y ⇐⇒ ||Ku− y|| = 0,

which might not be solvable. u ∈ X is a Bestapproximation iff

||Ku− y||Y ≤ ||Kv − y||∀v ∈ X.

If X and Y are Hilbert spaces, u is called least squares solution.

Note: The least squares solution is not guaranteed to exist (later).

Definition 2.10
Let everything as in 2.9. The least squares solution might not be unique. u ∈ X is
called minimal norm solution (or Moore–Penrose–solution) iff

||u|| ≤ ||v||∀ Bestapproximations v.

Notation: We denote by

ker(K) = N(K) = {u ∈ X : Ku = 0}

the nullspace of K.

Notation: We denote by

Range (K) = R(K) = Im(K) = {Ku ∈ Y : u ∈ X}

the range of K.

Lemma 2.11
The kernel of a continuous linear operator K is always closed. The range is not
necessarily closed. Example: Integral operator with kernel in S on L2. Ku is in C∞

which is not closed w.r.t. L2.
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For the following assume X, Y Hilbert spaces.

Lemma 2.12

R(K)⊥ = N(K∗)

R(K∗) = N(K)⊥

Theorem 2.13
The following is equivalent:

1. u is a least squares solution of Ku = g.

2. K∗Ku = K∗g (Gauss normal equations).

3. Ku = Pg, P orthogonal projection onto R(K).

Corollary 2.14

1. Ku = g has a least squares solution iff

g ∈ R(K)⊕N(K∗) = R(K)⊕R(K)⊥.

2.
R(K)⊕R(K)⊥ = R(K)⊕R(K) = Y

The affine subspace of Y for which a least squares solution exists is dense in
Y .

3. If u and v are LSQ then u− v ∈ N(K).

4. The set of all least squares solutions of Ku = g is convex and closed. If it is
nonempty, the minimum norm solution is unique.

5. Let g such that Ku = g has at least one LSQ. Then u is a MNS iff u is an LSQ
u ∈ R(K∗).

2.3 Compact Operators

Motivation: In finite dimensional vector spaces, the MNS can easily be computed
using the SVD. We want to do the same for infinite dimensional spaces. Here, the
existence of the SVD is not guaranteed. We need an additional restriction for the
operator, it needs to be compact. Luckily, most operators in inverse problems are
compact. We collect their properties.
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Definition 2.15
Let X, Y Banach spaces, K : X 7→ Y linear.

K is compact iff K(B) is compact for all bounded sets B ⊂ X

or equivalently

For all bounded sequences (un) ⊂ X (Kun) has a convergent subseries.

Remark 2.16

1. Let K1, K2 compact, α ∈ R. Then K1 +K2 and αK1 are compact.

2. Let dimR(K) <∞ and K linear and continuous. Then K is compact.

3. Let K compact. Then K is continuous.

4. Let K : X 7→ Y , L : Y 7→ Z, K and L continuous. If K or L is compact, then
LK is compact.

Lemma 2.17
Let K, Kn : X 7→ Y , and Kn compact.

||K −Kn||X,Y 7→ 0 =⇒ K is compact.

Remark: The convergence is with respect to the operator norm, a pointwise con-
vergence for all elements in X is not sufficient! The convergence must be uni-
form.

Corollary 2.18
Let k ∈ L2(Σ× Ω), Σ and Ω bounded. Then K : L2(Ω) 7→ L2(Σ),

(Ku)(x) :=

∫
Ω

k(x, y)u(y)dy

is well–defined (a.e.) and K is compact.

Idea of proof: Restrict to continuous k. Then the integral over k can be discretized
(see homework), which defines operators with finite–dimensional range that con-
verge towards K, so K must be compact. Now use that continuous functions are
dense in L2.

Lemma 2.19 (Riesz’ Lemma)
Let X Banach, U ⊂ X a closed subspace, X 6= U . Then there is an x ∈ X with the
property that ||x|| = 1, dist(x, U) ≥ 1

2
.
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Corollary 2.20
If dimX = ∞, then there exists a sequence (xn) ⊂ X such that ||xn|| = 1 and
dist(xn, xm) ≥ 1

2
for n 6= m.

Remark: (xn) has no convergent subsequence.

Corollary 2.21
Let dimX = ∞. Let K : X 7→ Y compact. Then K has no continuous inverse,
Ku = g is ill–posed.

Idea: If the inverse of K exists, use the (xn) from 2.20. Since K is continuous,
yn = Kxn is bounded, but xn = K−1yn has no convergent subsequence.

Now let’s look at compact operators in Hilbert spaces.

Theorem 2.22 (Bessel’s inequality)
Let (uk) ONS in X, u ∈ X. Then

||u||22 ≥
∑
k

(uk, u)2.

Definition 2.23
Let (uk) ONS in X. Then (uk) is complete iff

X = span((uk)).

The span is the set of all finite linear combinations of the uk.

Theorem 2.24 (Parseval’s identity):
(uk) is complete iff

||u||2 =
∑
k

(u, uk)
2.

Remark: Let U = span((uk)) for an ONS (uk). Then the Bestapproximation (orthog-
onal projection) for x ∈ X in U is given by

u =
∑
k

(x, uk)uk.

2.4 Representation theorem for s.a. Operators

Theorem 2.25
Let K : X 7→ X compact, X Banach. Then

dimN(I −K) <∞.
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Idea of Proof: 2.20.

Corollary 2.26
If λ 6= 0 is an Eigenvalue of K, then the Eigenspace has finite dimension.

From now on let X, Y Hilbert (so scalar product and adjoint make sense).

Definition 2.27
K : X 7→ Y is selfadjoint (s.a.) iff K = K∗.

Lemma 2.28

1. Eigenvalues of s.a. operators are real, even over complex vectorspaces.

2. Let K s.a. Then the eigenvectors for different eigenvalues are orthogonal.

Theorem 2.29
Let K compact and s.a. Then it has an Eigenvalue λ with |λ| = ||K||.
|λ| ≥ |µ| for all eigenvalues µ of K.

Example: Integral operator with k(x, y) = α(x)α(y).

Remark: If k(x, y) = k(y, x) then K is s.a. integral operator.

Remark: Every s.a. compact operator K has at least one eigenvalue. We use this
to construct a series of nonzero eigenvalues (λk) and corresponding orthonormal
eigenvectors (uk) which is complete in the following sense: Every eigenvector of K
corresponding to a nonzero eigenvalue is ı́n span((uk)).

Theorem 2.30
Let K : X 7→ X compact and s.a. Let (uk), (λk) a complete orthonormal set of
eigenvectors and corresponding eigenvalues λk 6= 0.

Let u ∈ U . Then
u =

∑
k

(u, uk)uk + u⊥, Ku⊥ = 0.

Remark: For finite dimensional operators this says: Self–adjoint operators (sym-
metric matrices) posess an ONB of eigenvectors (can be diagonalized by unitary
matrices).

Remark: Let K : X 7→ X compact and s.a. Let ũ ∈ X the (noisy) measurement of
u ∈ X, ũ = u+ n, n noise. Let ||n|| ≤ ε. Then by 2.1 we have

||Ku−Kũ|| ≤ ||K|| ε.
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However, using the representation theorem, we can do better. Plugging in 2.30 we
get

||Ku−Kũ|| ≤
∑
k

|λk| |(n, uk)|.

So we see: The error in (n, u1) gets amplified by |λ1| = ||K||, but the error in (n, u⊥)
has no effect at all, and errors in (n, uk) for large k are small (since the λk converge
to zero).

2.5 Singular Value Decomposition

Definition 2.31
Let K : X 7→ X compact and s.a.
K positive (semi–) definite iff

(x,Kx) > (≥) 0∀x ∈ X, x 6= 0.

Remark 2.32

1. K positive semidefinite iff K is s.a. and all Eigenvalues λk ≥ 0.

2. Let K : X 7→ Y . Then K∗K and KK∗ are positive semidefinite.

Theorem 2.33
Let K : X 7→ Y linear and compact, X, Y Hilbert spaces. Let (uk), (λk) complete
systems of Eigenvalues and Eigenvectors of K∗K as in 2.30. Let λk = σ2

k, σk > 0.
Let vk = (Kuk)/||Kuk||. Then vk is a complete ONS of Eigenvectors of KK∗ w.r.t.
the Eigenvalues λk = σ2

k.
Then we have

∀u ∈ X : Ku =
∑
k

σk(u, uk)vk

∀v ∈ Y : K∗v =
∑
k

σk(v, vk)uk

We denote the σk as singular values and the vk, uk as (left, right) singular vectors
(or singular functions in function spaces) of K.

Remarks:

1. The series converges since ∑
k

(u, uk)
2 ≤ ||u||2

13



by Bessel’s inequality and the fact that σk converges to zero if the sum is
infinite.

2. Analytically computing the SVD is usually difficult except in meaningless ex-
amples (see below).

3. It’s usually a bad idea to use the SVD for computation. This is an analytical
tool, in practice we can do better.

4. Most of the SVDs of operators in imaging share the property: un for large n
(and that means σn small) is highly oscillating.

Example:

(Ku)(x) :=

∫ x

0

u(t) dt, K : L2(Ω) 7→ L2(Ω)

Leads to the ODE

u′′k(x) = − 1

σ2
k

uk(x), uk(1) = 0, u′k(0) = 0.

The singular values are

σk =
2

π

1

(2n+ 1)
= O(

1

n
).

The singular functions are

uk(t) =
√

2 cos
t

σn
, vk(t) =

√
2 sin

t

σn

Corollary 2.34
Let K : X 7→ Y compact. Let σi, ui, vi the singular values and vectors of K. The set
of all least squares solutions of Ku = g is given by∑

k

1

σk
(g, vk)uk + u⊥

where u⊥ is the nullspace of K.
The Minimum Norm Solution of Ku = g is given by∑

k

1

σk
(g, vk)uk.

If the sum does not converge, no least squares solution and no Minimum Norm So-
lution exist.
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Definition 2.35 Order (degree) of ill-posedness, see also 2.3
An inverse problem Ku = g is

• mildly ill–posed of order α, iff

∃C : σn ≤ C
1

nα
∀n.

• severely ill–posed, if no such C and α exist.

Remark: This definition is compatible with the old one.

Definition 2.36 Generalized Inverse, Pseudo Inverse, Moore–Penrose Inverse
Let K : X 7→ Y , X, Y Hilbert–spaces. The operator

K+ : R(K)⊕N(K∗) 7→ X, K+g := u+

where u+ is the Minimum–Norm–Solution ofKu = g, is called Generalized (Pseudo,
Moore–Penrose) Inverse.
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Chapter 3

Regularization

3.1 Definition

Remark: Let (σk, uk, vk) a singular system for the operator K. Then for α > 0 the
family of operators

K+
α (g) :=

∑
σk≥α

1

σ k
(g, vk)uk

is called truncated singular value decomposition regularization.

Definition 3.1 Regularization
Let K : X 7→ Y . A family of operators K+

α , α ∈ R+. is called a regularization of K+

iff there is a function (parameter choice rule) α(δ, gδ), such that

∀δ > 0, g ∈ R(K)⊕N(K∗) : lim
δ 7→0

sup
||g−gδ||≤δ

||Kα(δ,gδ)gδ −K
+g|| = 0.

If α does not depend on gδ, α is called a priori.

Corollary 3.2
K+
α is a regularization iff for all (gn) in Y with ||gn − g|| ≤ δn, δn 7→ 0

K+
α(δn,gn)gn 7→ K+g.

Remark: If α does not depend on δ, K+ is continuous.
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3.2 Tikhonov–Phillips Regularization

Definition 3.3 Tikhonov–Phillips Regularizer
fα is the Tikhonov–Regularizer of Kf = g iff

fα = arg min
f
||Kf − g||2Y + α2||f ||2X .

Lemma 3.4
Let K : X 7→ Y continuous, X, Y Hilbert spaces. Then Tikhonov–Regularization is
well–defined and continuous. We have

f+
α = K+

α g = (K∗K + α2I)−1K∗g.

K+
α is continuous.

Remark: Let K compact, (σk, uk, vk) singular system of K. Then

f+
α =

∑
k

σk
α2 + σ2

k

(g, vk)uk.

3.3 Regularization and the SVD

Lemma 3.5 Let gα : R+ 7→ R+. Assume

1.
gα(σ)→α→0

1

σ
.

2.
∀α∃Cα : sup

σ
gα(σ) ≤ Cα.

3.
∃C : sup

α,σ
σgα(σ) ≤ C.

Let K : X 7→ Y compact with singular system (σk, uk, vk). Then

K+
α : Y 7→ X, K+

α g =
∑
k

gα(σk)(g, vk)uk

is well–defined and continuous, ||K+
α || ≤ Cα. For g ∈ R(K)⊕N(K∗) we have

K+
α g 7→α 7→0 K

+g.
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Remark: Tikhonov fits into this scheme setting

gα(σ) =
σ

α2 + σ2
, Cα =

1

2α
, C = 1.

Remark: Truncated SVD fits into this scheme setting

gα(σ) =

{
0, σ ≤ α
1
σ
, σ > α.

, Cα =
1

α
, C = 1.

Remark: g is in the domain of K+ iff∑
k

1

σ2
k

(g, vk)
2 <∞

(Picard–criterion).

Corollary 3.6 Let K+
α as above. Let the parameter choice rule α such that

α(δ, gδ)→δ→0 0, δ ||Kα(δ,gδ)|| → 0.

Then (α, K+
α ) is a regularization of Kf = g.

Remark: If g(α) := ||K+
α || is strictly decreasing (as for Tikhonov, Truncated SVD),

setting

α(δ) := g−1(
1√
δ

)

satisfies the condition.

Example: The Lavrentiev Regularization is defined by

K+
α g :=

∑
k

1

σk + α
(g, vk)uk.

If the range of K is positive definite and dense in Y , the Lavrentiev regularization
can be computed via

(K + αI)(K+
α g) = g.

Lavrentiev regularization is a regularization with Cα = 1
α

(for a proper choice of
α).

Example: Iterative Regularization via iteratively solving the normal equation in the
range of K∗. As an example we take Landweber (but conjugate gradient and others
are also in use). Landweber iterations are defined according to

u(n+1) = u(n) − ωK∗(Ku(n) − g), u(0) = 0, 0 < ω <
2

σ1

.

18



Note that all iterates are in the range of K∗.

Let n = b 1
α
c. Then

K+
α g = u(n)

is a regularization (for a proper choice of α). Note that the idea here is early stop-
ping: For a fixed δ, we choose an n where we stop the iteration, we do not let it
converge towards a solution of the normal equation.

Example: Iterated Regularization

Here, we try to improve an existing approximation u(n) to K+g. Let

u(n+1) = u(n) + d(n).

We want u(n+1) to solve our equation, so we get the inverse problem

K(u(n) + d(n)) = g =⇒ Kd(n) = g −Ku(n).

Using any regularization scheme (e.g. Tikhonov), we determine an approximate so-
lution d(n)

α and set
u(n+1) := u(n) + d(n)

α .

Under conditions, for fixed n,
K+
α g := u(n)

is a regularization scheme. You will do this explicitly for Tikhonov in the home-
works.

Example: Discretizing by point evaluation

A simple regularization idea could be: Simply discretize the problem by point eval-
uations and use techniques from numerical analysis and numerical linear algebra
to solve the inverse problem. This is very problematic. We look at the following
example:

Let

Ku(t) :=

∫ π

0

k(t, s)u(s)ds

an integral operator with continuous kernel function on the interval [0, π] as be-
fore.

Fix a discretization parameter N and let (xk), k = 0 . . . N , equidistant in [0, π]. Let
h = 1

N
. Then we have

(Ku)(xj) =

∫ π

0

k(t, s)u(s) dx ∼ h
∑
l

Dlk(xj, xl)u(xl)
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where the Dl are chosen according to the scheme we use for approximating the
integral, we have e.g.

(Dk) = (
1

1
, 1, . . . , 1,

1

2
)

for the trapezoidal rule and

(Dk) =
1

3
(1, 4, 2, 4, 2, . . . , 4, 2, 4, 1)

for the Simpson rule. At this point, both should deliver very similar results, and if
one is preferrable, it should be Simpson due to its higher order.

Assume that g(xk) = (Ku)(xk) were measured. Then setting

U :=

u(x0)
...

u(xn)

 ∈ Rn+1, G :=

g(x0)
...

g(xn)

 ∈ Rn+1,

K̃ := (k(xj, xl)) ∈ R(n+1)×(n+1), D = diag((Dk)) ∈ R(n+1)

we have approximately
G ∼ hK̃Du.

Thus, the discretized inverse problem is

hK̃DTrapezU
Trapez = G

for a solution using the trapezoidal rule (D is chosen for trapezoidal rule) and

hK̃DSimpsonU
Simpson = G.

However, assuming that K̃ is invertible, this yields

U Trapez = D−1
TrapezDSimpsonU

Simpson.

This is valid independent of N (and thus h), and means that the two solutions can-
not converge to the same limit function. In fact, since DTrapez is almost the iden-
tity matrix, and DSimpson is highly oscillating, at least one of the two vectors must
be highly oscillating. We give a programming example that shows this in prac-
tice.

The result of this discussion is that point evaluations are an extremely bad choice
for discretization.
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Motivated by this discussion, and with truncated SVD in mind, we propose moment
methods:

Example: Moment–Methods, Regularization by projection

Look for a vector u+ in the span of (u1, . . . un) such that

ϕk(Ku
+ − g) = 0, ϕk(v) := (vk, v).

If (σk, uk, vk) is a singular system, then this is equivalent to Truncated SVD.

For other choices, this discretization is a regularization under relaxed assumptions,
mainly requiring that

span uk = X

and
span vk ⊃ R(K).

Let Ku = g, ||g − gδ|| ≤ δ. If K−1 is continuous, we have

||K−1gδ − u|| ≤ ||K−1|| ||gδ − g|| ≤ ||K−1||δ = O(δ).

If K+ is discontinuous, we need to use regularization and have that ||K+
α || is un-

bounded (exercises). In this case we have

||K+
α gδ −K+g|| ≤ ||K+

α gδ −K+
α g||︸ ︷︷ ︸

≤||K+
α || δ

+ ||K+
α g −K+g||︸ ︷︷ ︸

=:II

.

Corollary 3.7 Let Ku = g an inverse problem, ||g − gδ|| ≤ δ, K+ discontinuous.
Then

||K+
α gδ −K+g|| 6= O(δ).

So this is the price we have to pay for regularization: The error for the inverse prob-
lem does not go to zero with the same rate as for the continuous problem (1).

For term II we know that it converges to zero (Picard criterion). However, that con-
vergence can be arbitrarily slow, and in fact, no general rate can be given for dis-
continuous K+.

Theorem 3.8
Assume (in the usual setting)

||K+
α g −K+g|| ≤ f(α)∀ g ∈ D(K+), f(α)→α→0 0.

Then K+ is continuous.
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Assume that (σk, uk, vk) is a singular system for K, and gα defines an SVD–based
regularization scheme. Then

||K+
α g −K+g||2 =

∑
k

(σkgα(σk)− 1)2︸ ︷︷ ︸ 1

σ2
k

(g, vk)
2︸ ︷︷ ︸∑

<∞ (Picard)

.

The first term is bounded, but does not go to zero (fix α, let σ → 0). The sum
then converges, but arbitrarily slow. In order to get a rate, we have to make the
assumption that the scalar products (g, vk) drop fast. This is not an unusual condi-
tion, in Numerical Analysis you often proved error estimates for difference schemes
for computing the derivative, based on the assumption that the derivative was one
more time differentiable.

Definition 3.9 (source conditions)
u+ satisfies a source condition of order µ iff u+ is in the Range of (K∗K)µ.

We allow for µ not to be an integer (see below).

Theorem 3.10
Let u+ = (K∗K)µv, v ∈ X. Then

||K+
α g −K+g||2 ≤ max

σ∈(0,σ1]
|gα(σ)σ2µ+1 − σ2µ|2︸ ︷︷ ︸

=:ϕµ(α)2

||v||2.

Now we have
||K+

α gδ −K+g|| ≤ Cαδ + ϕµ(α) · ||v||.

Of course, we want to choose α(δ) such that the right hand side (or at least the
order with respect to δ) is minimal. Then, the parameter choice is called optimal
(order optimal).

Example: Truncated SVD

The parameter choice

α(δ) :=

(
δ

2µ||v||

) 1
2µ+1

is optimal. The rate achieved is O(δ2µ/(2µ+1)). The rate gets better with µ → ∞,
approaches δ, but is always smaller than δ.

Example: Lavrentiev
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For µ ≥ 1
2
, the rate is O(

√
δ). For µ < 1

2
, the rate is O(δ2µ/(2µ+1)). The best order is

achieved for µ = 1
2

and does not improve for higher µ.

Example: Tikhonov

For µ ≥ 1, the rate achieved is O(δ2/3). For µ < 1, the rate is O(δ2µ/(2µ+1)). The best
order is achieved for µ = 1.

Definition 3.11 If the convergence rate increases up to a value µ0 and then stays,
we call 2µ0 the qualification of a regularization.

In a sense, this defines an optimal source space for the regularization
scheme.

Example: TSVD has qualification∞, Tikhonov 2, Lavrentiev 1.

Morozovs Discrepancy Principle:

Assume again that ||gδ− g|| ≤ δ and that the range ofK is dense in Y . Since gδ has
an error bound of δ, it does not make sense to satisfy the data any better. So:

α is a good choice for a regularization parameter if

||(K(K+
α gδ)− gδ|| ∼ Cδ.

So to check a chosen regularization parameter, compute the norm of the defect. If
it is on the order of δ, fine. If it is smaller, choose a higher value of α. If it is bigger,
choose a smaller value of α.

There are many (theoretical) reasons why this yields a good choice for α. As an
example, we show that for truncated SVD and an optimal choice of α the equation
is correct.

Remark: All linear regularization methods can be analyzed using the SVD, and they
all share the same property: For fixed α, the lower–order terms (small k) are almost
the same in K+

α and K+, the higher order terms are damped (their absolute value
is smaller in the regularization, or vanishes as in the truncated SVD). Their only
difference is the rate at which the terms get smaller.

Remark: Assuming that uk is more and more oscillating (which is the case at least
for the antiderivative, but can also be proven for many other operators like the
Radon transform) this implies that we take away highly oscillating terms from the
result, effectively smoothing the result.

Remark: The smoother a function is, the faster its Fourier coefficients vanish.
Let e.g. g : [−π, π] 7→ R n times differentiable, and ak its Fourier coefficients.
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Then
g(n)(x) =

∑
k

inknake
ikx.

Since that function exists, we have∑
k

(knak)
2 <∞

and the ak decay at least as 1
n

. This implies that for smooth functions, their share
in highly oscillating functions vanishes rapidly. and is a hint that taking away the
high–frequency parts is not too bad.

Remark: The SVD is often used to analyze image or signal denoising, where the
operator is simply the identity. This is not strictly correct for the standard scalar
product, since identity is not a compact operator, and in fact it posesses no SVD.
However, choose the Fourier system

X = Y = L2([−π, π]), uk = vk =
1

2π
eikx, σk = 1.

Then obviously
Ku =

∑
k

σk(u, uk)vk.

This system shares many properties of the SVD, including that the uk are more and
more oscillating with k. However, it is not a singular system (e.g. the σk do not go
to zero).

Remark: For denoising (K = I) we have for Tikhonov

(K∗K + α2I)u+
α = K∗g =⇒ u+

α =
1

1 + α2
g.

So classical Tikhonov simply multiplies the data with a constant. Choosing a dif-
ferent (semi-) norm for the penalty term helps. Assuming that u is n times differen-
tiable and choosing

u+
α arg min

u
||Ku− g||2 + α2||u(n)||2

we have

u+
α =

∑ 1

1 + α2k2n
(g, vk)uk.

Here, it makes sense to take n fractional. n = 1
2

is a common choice.

Conclusion: Choosing an appropriate norm is important.
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Conclusion: All linear regularizations share very similar properties.

In order to extend our capabilities, we need to turn to nonlinear regularizers K+
α . A

common choice is

uTVα = arg min
u
||Ku− g||2 + α||∇u||1

(Total variation). It penalizes the non–monotonicity of a function. We investigate
this in a numerical experiment, but do not analyze it at this point, rather we turn to
applications now.
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Chapter 4

Fourier Transform and Distributions

In the preceding chapter, we saw that discrete and analytic Fourier Transform play
an important role in image and signal analysis. We collect some basic definitions
and properties, starting with the analytic transform. Most of this can be found in
Forster, Analysis III, and is covered in the lecture Analysis III.

4.1 Fourier Transform

Definition 4.1 Analytic Fourier Transform
Let f ∈ L1(Rn). Then the Fourier Transform f̂ of f is defined as

f̂(ξ) := (2π)−n/2
∫
Rn
f(x)e−ixξ dx.

Lemma 4.2
Always, let f ∈ L1(Rn).

1.
|f̂(ξ)| ≤ (2π)−n/2||f ||1.

2. f̂ is continuous.

3. Let f differentiable.
f̂ ′(ξ) = iξf̂(ξ).

Let xf(x) in L1.

x̂f(x)(ξ) = i
d

dξ
f̂(ξ).
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4. Let f sufficiently differentiable, α ∈ Nn
0 .

Dαf :=

(
d

dx1

)α1

· · ·
(

d

dxn

)αn
f

xα := xα1
1 · . . . · xαnn

|α| := α1 + . . .+ αn

D̂αf(ξ) = i|α|ξαf̂(ξ)

x̂αf(x)(ξ) = i|α|(Dαf̂)(ξ).

There was a typo in the lecture for the last formula.

5. Let λ 6= 0, fλ(x) := f(λx).

f̂λ(ξ) = |λ|−nf̂(
ξ

λ
).

6. Let a ∈ Rn, fa(x) := f(x+ a).

f̂a(ξ) = eiaξf̂(ξ).

7. The Fourier Transform of e−x
2/2 is e−ξ

2/2.
Idea of proof: Both solve the same initial value problem for an ODE.

8. Let f(x) = χ[−1,1](x) and

sinc(x) :=

{
1, if x = 1
sinx
x
, otherwise.

Then

f̂(x) =

√
2

π
sinc(x).

Let f : Rn 7→ R, f(x) := χ[−1,1]n(x). Then

f̂(ξ) =

(
2

π

)n/2
sinc(ξ1) · . . . · sinc(ξn).

Since f̂ is not in L1, the Fourier transform is not an operator from L1 to L1.

Theorem 4.3 Fourier Transform on L2

The Fourier Transform can be extended continuously as an operator from L2 to L2.
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Theorem 4.4 Inverse Fourier Transform
Let f ∈ L2(Rn) or f, f̂ ∈ L1(Rn). Then the inverse Fourier Transform of f is defined
as

f̃(ξ) :=
1√
2π

∫
Rn
f(x)eixξ dx

and ˜̂
f =

̂̃
f = f.

Note: In the following, we will often use the Fourier transform of L2-functions and
use their integral representation, although the integral does not converge in the
usual sense. E.g. for the sinc-function:

f̃(x) = (2π)−
1
2

∫
R

√
2

π

sinx

x
eixξdξ = χ[−1,1](x).

This is to be understood in the sense of Theorem 4.3: Represent sinc as the limit of
a sequence of functions fn in L2 ∩ L1. Then f̂n → F , and we define F as the value
of the integral above.

Theorem 4.5 (Parseval)

1. Let f, g ∈ L1(Rn). Then ∫
Rn
f · ĝ =

∫
Rn
f̂ · g.

2. Let f, g ∈ L2(Rn). Then

(f̂ , g)L2 = (f, g̃)L2

(f̂ , ĝ)L2 = (f, g)L2

||f̂ ||2 = ||f ||2.

Parseval confirms a remark that we made at the beginning: The operator norm of
the Fourier Transform and its inverse is 1. Both are continuous, thus the inverse
problem of Fourier Transformation is well–posed.

We now turn to the connection between Fourier Transform and convolutions (see
Definition 2.6).

Remark: f ∗ g = g ∗ f .

Remark: supp(f ∗ g) ⊂ (suppF ) + (suppG).
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Theorem 4.6 (convolution theorem)
Let f, g ∈ L1(Rn). Then

f̂ ∗ g(ξ) = (2π)n/2f̂(ξ)ĝ(ξ).

Example: Let f(x) = χ[−1,1](x). Then

(f ∗ f)(x) =

{
0, if |x| > 2

2− |x|, otherwise.
.

(̂f ∗ f)(ξ) =
√

2πf̂(ξ)2 =
√

2π
2

π
sinc(ξ)2.

Remark: This gives us a way of defining the convolution of two L2–functions. Let
f, g ∈ L2. Then f̂ , ĝ are in L2 and f̂ ĝ is in L1, so its inverse Fourier Transform exists.
The only way of defining the convolution without breaking the convolution theorem
is

f ∗ g := (̃f̂ · ĝ).

Remark 4.7
Let f,Dαf ∈ L1. Then

|D̂αf(ξ)| = |ξα| |f̂(ξ)|
which implies

|f̂(ξ)| ≤ ||D
αf ||1
|ξα|

.

For f in C∞, all derivatives in L1, f decays faster than one over any polynomial.

4.2 Distributions or generalized functions

Always let Ω ⊂ Rn open and 6= ∅. Usually we have Ω = Rn.

Let

D(Ω) = C∞0 (Ω) = {f ∈ C∞(Ωn) : ∃K ⊂ Ω compact : supp f ⊂ K}.

We call D(Ω) the space of test function and set D = D(Rn).

The function

f(x) :=

{
e
− 1

1−||x||2 , if ||x|| ≤ 1

0, otherwise.
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is inD. By scaling, shifting, convolving f with functions of compact support we can
create a zoo of functions in D.

We view D(Ω) as a topological space, generated by the semi–norms

|f |α,∞ := sup
x∈K
|(Dαf)(x)|.

For a sequence (ϕn) in D(Ω), ϕn → ϕ iff

1.∃K ⊂ Ω compact : suppϕk ⊂ K ∀ k
2.Dαϕk 7→ Dαϕ uniformly

The topology is extremely strong.

Definition 4.8 (Distributions)
We define the space of distributions over the space of test functions D(Ω) by

D(Ω)′ := {T : D(Ω) 7→ R, T linear cotinuous}.

T is continuous iff
ϕn → ϕ⇒ T (ϕn)→ T (ϕ).

Lemma 4.9 (Embedding of L1
loc in D(Ω)′)

Let
L1
loc(Ω) = {f : f ∈ L1(K)∀K ⊂ Ω compact}.

E.g. all continuous functions are in L1
loc.

Let f ∈ L1
loc. Then

Tf : D(Ω) 7→ R, Tf (ϕ) :=

∫
Ω

f(x)ϕ(x) dx

is in D(Ω)′.

Important note: We will identify the function f with its corresponding distribution
Tf . In this sense, L1

loc ⊂ D(Ω).

Lemma 4.10 (Delta–Distribution)
Let

T : D(Ω) 7→ R, Tϕ := ϕ(0).

Then T ∈ D(Ω)′. δ := T is called Dirac–Distribution or Delta–Distribution.
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Remark: δ cannot be represented as a function f such that Tf = δ. But defin-
ing

fk :=

{
1
k
, if |x| < 1

2k

0, otherwise.

we obviously have
Tfk(ϕ)→ ϕ(0) = δ(ϕ),

so with pointwise convergence we have

fk ≡ Tfk → δ.

δ is the limit of functions that converge to 0 for x 6= 0, to ∞ for x = 0, and have
integral 1, so δ is often viewed (in particular in the physics and engineering world)
as generated by the “function”

δ(x) :=

{
∞, if x = 0

0, otherwise.
,

∫
Rn
δ(x) dx = 1.

Alternatively, the δ distribution can be approximated by smooth functions scaling
the bump function from 4.8.

Corollary 4.11
Let α a Multiindex, x ∈ Ω fixed.

Tα,x(ϕ) := (Dαϕ)(x)

is in D(Ω)′.

Corollary 4.12
Let M a k–dimensional manifold and σ the k–dimensional induced measure. Then

TM(ϕ) :=

∫
M

ϕ(x)dσ(x)

is in D(Ω)′.

Remark: Of course at this point we have the Radon transform in mind, it is a distri-
bution.

Definition 4.13 (Derivative of a distribution)
Let T ∈ D(Ω)′, α a multiindex. Then the derivative DαT of T is defined as

(DαT )(ϕ) = (−1)|α|T (Dαϕ).
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Note: This definition is motivated by

(Tf )
′ ≡ f ′ ≡ Tf ′ .

Note: All distributions are differentiable. In particular, all functions in L1
loc are dif-

ferentiable (but of course, their derivatives might be distributions which cannot
be represented as functions). We extend the definition of differentiability beyond
weakness.

Example: For f(x) = sgn(x), we have f ′(x) = 2δ(x).

Definition 4.14 (Convolution of distribution and test function)
Let g ∈ D, gx(y) := g(x− y) and T ∈ D′. Then

(T ∗ g) : Rn 7→ R, (T ∗ g)(x) := T (gx).

Again, this is motivated by

Tf ∗ g ≡ f ∗ g ≡ Tf∗g.

T ∗ g does not necessarily have compact support (take T = 1).

Example: (δ ∗ g)(x) = g(x).

Note: Let hz = h(z + x). Then

(f ∗ hz)(y) =

∫
R
f(x)h(z + y − x) dx

= (f ∗ h)(z + y) = (f ∗ h)z(y).

Thus: Viewing f ∗ g as an operator on g for fixed f , the result is shifted by z if
the argument is shifted by z. We call this property shift–invariant. It is very com-
mon in imaging: shifting the object is shifting the image (neglecting boundary ef-
fects).

It is easily seen that any shift–invariant operator is a convolution (in the distribu-
tional sense). The kernel function can be recovered by applying the operator to the
δ distribution.

A common application for this is microscopy. Typically, the outcoming images are
blurred. Since they are shift–invariant (again discarding boundary effects), they are
in fact convolutions. The kernel function f can be recovered by taking the image of
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an approximate δ–distribution, a bright single spot. In order to recover the clear im-
age g from a blurred image gb we have to solve the inverse problem (deconvolution
problem)

f ∗ g = gb.

Note: The Fourier Transform of a distribution in D is not easily defined. Using the
same approach as above, we need to have

T̂f = f̂ = Tf̂ .

So the only viable definition is

T̂ (ϕ) := T (ϕ̂).

However, this makes no sense: A consequence of Paley–Wiener is that if ϕ and
ϕ̂ have compact support, then ϕ = 0. So if 0 6= ϕ ∈ D ⇒ ϕ̂ 6∈ D, and the
definition makes no sense. We need to change our space of test functions such
that the Fourier Transform of any test function is a test function.

4.3 Tempered Distributions

In order to be able to define Fourier Transforms, we change our space of test func-
tions to the Schwartz space.

Definition 4.15 (Schwartz space, tempered distributions)
The functions space

S = {f ∈ C∞(Rn) : ∀α, β ∈ N0 ∃Cα,β : |xα(Dβf)(x)| ≤ Cα,β ∀x ∈ Rn}

is the Schwartz space of rapidly decaying functions. It is the space of test functions
for S ′, the space of tempered distributions, as in 4.8.

Using that D is dense in S, all remarks for D hold for S.

Note: D ( S: Obviously all functions from D are in S. ϕ(x) := exp(−||x||2/2) is in
S, but not in D.

Definition 4.16
Let ϕ ∈ S, T ∈ S ′. Then the Fourier Transform T̂ and the Inverse Fourier Transform
T̃ of T are defined as

T̂ (ϕ) := T (ϕ̂)

T̃ (ϕ) := T (ϕ̃)
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Due to 4.7 ϕ̂ ∈ S, so this is well–defined.

Of course, we have ˜̂T = T (this is a typo in the video).

Example:

δ̂(ϕ) = δ(ϕ̂) = ϕ̂(0) =

∫
Rn

(2π)−n/2ϕ(x) dx = T(2π)−n/2 .

So the Fourier Transform of δ is the constant function (2π)−n/2:

δ̂ = (2π)−n/2 · 1 = δ̃

1̂ = (2π)n/2δ = 1̃

Neglecting the fact that δ has no function representation and inserting into the in-
verse Fourier Transform, we find for n = 1:

δ(x) = (2π)−1/2

∫
R
δ̂(ξ)eixξdξ =

1

2π

∫
R
eixξ dξ.

The integral on the right hand side does not seem to make any sense at all, it does
not converge when its limits go to infinity. However, in a distributional sense, the
integral is fine. To give you the idea, let us approximate the integral by

1

2π

∫ R

−R
eixξ dξ =

R

π
sinc(Rx) =: δR(x).

This can easily be computed observing that

√
2πδ̂R = χ[−R,R].

We would expect that δR → δ, or δR(ϕ)→ δ(ϕ) (all for R→∞).

Using the convolution theorem, we have

(ϕ ∗ δR)(ξ) =
√

2π
˜̂
ϕ · δ̂R(ξ) =

∫ R

−R
ϕ̂(x)eixξdx→ ϕ(ξ)

and thus

TδR(ϕ) =

∫
R
δR(x)ϕ(x) dx = (ϕ ∗ δR)(0)→ ϕ(0)

and the integral converges in a distributional sense.

34



Theorem 4.17
Let f ∈ S. The Hilbert Transform from 2.8 has the property

Ĥf(ξ) = −i sign(ξ)f̂(ξ).

Corollary 4.18 ´

The Hilbert transform is invertible and continuous with operator norm 1. Its inverse
is continuous with operator norm 1.

Idea of proof: Use Parseval and the inverse Fourier Transform.

Example: Fourier Transform of radially symmetric functions

Definition 4.19 (Bessel Function of the first kind)
Let F : C 7→ C,

f(z) := ex(z− 1
z

) 1
2 , x ∈ R fixed.

The coefficents Jn(x) in the Laurent series

f(z) =
∞∑

n=−∞

Jn(x)zn

are the Bessel functions of order n of the first kind.

Lemma 4.20 (Integral representation of the Bessel function)

Jn(x) =
1

2π

∫ 2π

0

eix sinϕ−inϕdϕ =
i−n

2π

∫ 2π

0

eix cosϕ−inϕdϕ.

Lemma 4.21
Jn satisfies the Bessel differential equation

x2f ′′(x) + xf ′(x) + (x2 − n2)f(x) = 0.

Remark: The Bessel differential equation has a second base solution with singular-
ity at 0, Yn, which we will use later for inverse scattering.

Lemma 4.22

Jn(x) =
∞∑
m=0

(−1)m
(x

2

)n+2m 1

m!(n+m)!

Lemma 4.23 (Debye’s relation)

Jn(x) ∼ 0 for |x| < n.
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Remark: We will, throughout the script, in R2 use the notation

θ(ϕ) =

(
cosϕ
sinϕ

)
, θ⊥(ϕ) =

(
− sinϕ
cosϕ

)
Lemma 4.24
For fixed ψ ∫

S1

eirθ·θ(ψ)dθ = πJ0(r).

Also, for k ∈ Z: ∫
S1

eirθ·θ(ψ)−ikϕdθ = ike−ikψ2πJ0(r)

where θ = θ(ϕ).

Theorem 4.25 (FT of radially symmetric functions)
Let f : R2 7→ R, f radially symmetric (f(x) = f0(||x||).
Then

f̂(ξ) =

∫
R+

rf0(r)J0(r||ξ||) dr.

f̂ is also radially symmetric.

Theorem 4.26
Let f : R2 7→ R, f(x) := 1

||x|| . Then f̂ = f .
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Chapter 5

Radon–Transform

5.1 Definition and inversion theorems

Definition 5.1 (Radon–Transform)
Let C := Sn+1 × R ⊂ Rn+1. Let X(Rn) a function space on Rn, X(C) a function
space on C.
Let σ the (n− 1)–dimensional surface measure.

The Radon Transform R : X(Rn) 7→ X(C) is defined as

(Rf)(θ, s) =

∫
x·θ=s

f(x) dσ(x)

=

∫
x·θ=s

f(x) dx

=

∫
y·θ=0

f(s · θ + y) dy

=

∫
Rn
f(x)δ(x · θ − s) dx

Definition 5.2 (X–ray, Röntgen Transform)
Let

C ′ ∈ R2n = {(θ, x) ∈ Sn−1 × Rn : x · θ = 0}.
Let X(Rn) a function space on Rn, X(C ′) a function space on C ′.

The X–ray transform P : X(Rn) 7→ X(C ′) is defined as

(Pf)(θ, x) =

∫
R
f(x+ t · θ) dt.
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Remark: In R2,
Rf(θ, s) = (Pf)(θ⊥, s · θ).

Remark: Rf(θ, s) = Rf(−θ,−s), So the Radon transform is measured only for ϕ ∈
[0, π].

Remark: We will usually assume

supp f ⊂ K1(0),

so
(Rf)(θ, s) = 0 for |s| > 1.

Remark: We assume that the values of Rf are measured for (θ(ϕk), sl), ϕk = kπ
p

,
k = 0 . . . p− 1, sl = l

q
, l = −q . . . q. This is called parallel scanning, in reality things

are more difficult (fanbeam–scanning).

Theorem 5.3 (Fourier Slice Theorem, Projection Theorem)
Let f ∈ S(Rn), θ ∈ Sn−1, σ ∈ R. Then

R̂f(θ, σ) = (2π)(n−1)/2f̂(σθ)

where R̂f is a 1d–Fourier Transform with respect to the second argument.

Theorem 5.4 Fourier Slice for the X–ray transform
Let f ∈ S, θ ∈ Sn−1, ξ · θ = 0.

P̂ f(θ, ξ) =
√

2πf̂(ξ)

where P̂ f is an (n− 1)–dimensional Fourier Transform w.r.t. θ⊥ in the second argu-
ment.

Remark: When we want to use Fourier Slice for inversion directly, the inverse Fourier
Transform has to be performed on a polar grid, which is not feasible.

Remark: Taking discrete data leads to the idea of backprojection: Add up the values
for all measured lines that go through a point x in image space, thus

(R∗g)(x) =
∑
k

g(θk, x · θk).

This is not working, leads to very smooth images.

Geometrical considerations lead to the idea: Compute the backprojection, take its
Fourier Transform, Multiply with 1

||ξ|| , take the inverse Fourier Transform. This is
called ρ–filtered layergram.
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Definition 5.5 (Backprojection)
Let g ∈ S(C), x ∈ Rn.

R∗ : S(C) 7→ S(Rn), (R∗g)(x) :=

∫
Sn−1

g(θ, x · θ) dθ

is the backprojection operator.

Theorem 5.6 L2–adjoint
R∗ is the L2–adjoint of R.

Remark:

(R∗Rf)(x) = 2(
1

||x||
∗ f).

Theorem 5.7 Convolution Theorem for the Radon Transform
Let h ∈ S(C), f ∈ S(Rn). Then

(R∗h) ∗ f = R∗(h ∗Rf)

.

This implies that a convolution in image space can be performed in data space and
vice versa.

Definition 5.8 (Riesz–Potential)
Let α < n. Then

Iα : S(Rn) 7→ S(Rn), (̂Iαf)(ξ) = ||ξ||−αf̂(ξ).

Let α < 1. Then

Iα : S(C) 7→ S(C), (̂Iαg)(θ, σ) = |σ|−αĝ(θ, σ).

Theorem 5.9 (Riesz inversion formula for the Radon Transform)
Let 0 ≤ α < n. Then for f ∈ S(Rn)

f =
1

2
(2π)1−nI−αR∗Iα−n+1Rf.

For α = n − 1, we get an algorithm that uses filter on the backprojected data, ρ–
filtered layergram.

For α = 0, we get an algorithm that backprojects filtered data, filtered backprojec-
tion.
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Theorem 5.10 (filtered backprojection (FBP), ρ–filtered layergram)
Let f ∈ S(Rn), g = Rf . Then

f =
1

2
(2π)1−nI1−nR∗g (ρ filtered layergram)

and

f =
1

2
(2π)1−nR∗I1−ng (filtered backprojection).

Theorem 5.11
For n = 3, the algorithms reduce to

f(x) = − 1

8π2
∆x

∫
S2

g(θ, x · θ) dθ

(∆x is the Laplace operator wrt x) and

f(x) = − 1

8π2

∫
S2

g′′(θ, x · θ) dθ.

Definition 5.12
For n odd, the inversion of the Radon transform is local in the sense that to recon-
struct at a point x ∈ Rn, only the values of integrals over hyperplanes that hit an
arbitrarily small surrounding of the point is needed.

Remark: This means that to reconstruct just the heart in R3, we only need to mea-
sure on hyperplanes that hit the heart.

Theorem 5.13
For n = 2, we have

f(x) =
1

4π

∫
S1

∫
R

g′(θ, s)

x · θ − s
dx dθ.

Theorem 5.14
For n even, the inversion of the Radon transform is not local.

Remark: This means that for line integrals in R2, to reconstruct the heart we need
to measure on all lines that hit the support of f .

Remark: The original algorithm by Cormack, that was used in the first tomograph,
is a direct solution of the inverse problem based on Fourier expansion of f and
g.

Remark: Equivalent formulas exist for the Röntgen transform.

40



Theorem 5.15 Characterization of the range of the Radon transform
Let g = Rf . Then

pm(θ) :=

∫
R

smg(θ, s) ds

is a homogeneous polynomial in Pm.
If this holds for a g ∈ S(C) and all m, then g is in the range of R.

Remark: The Radon transform is invertible on its range, since it is injective due to
Fourier slice..

Definition 5.16 (fractional Sobolev spaces)
For α ≥ 0, we define the Sobolev space Hα(Rn) by

Hα(Rn) = {f : ||f ||Hα <∞}

where

||f ||2Hα :=

∫
Rn
|f̂(ξ)|2(1 + ||ξ||2)αdξ.

We define the Sobolev space Hα(C) by

Hα(C) = {g : ||g||Hα <∞}

where

||g||2Hα :=

∫
Sn−1

∫
R
|ĝ(θ, σ)|2(1 + σ2)αdθ.

Remark: We allow α to be fractional.

Remark: || · ||Hα is monotonous increasing with α.

Remark: || · ||Hα, || · ||Hα′ are not equivalent for α < α′.

Theorem 5.17 (Sobolev estimate for the Radon transform)
Let f ∈ L2(K1(0)) with compact support. Then

∃C1, C2 : C1||f ||L2 ≤ ||Rf ||H(n−1)/2 ≤ C2||f ||L2 .

Remark: If f is just in L2, then Rf is in H(n−1)/2, so Rf is in a sense smoother than
f , which makes inversion difficult.

Remark: For g = Rf , we have

1

C2

||g||H(n−1)/2 ≤ ||R−1g||L2 ≤ 1

C1

||g||H(n−1)/2 .

This implies that the inversion of the Radon transform is ill-posed of the order n−1
2

or 1
2

for n = 2. The inversion is very mildly ill–posed.
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Chapter 6

Sampling and implementation

Theorem 6.1 (Poisson’s summation formula)
Let f ∈ S. ∑

l∈Zn
f̂(2πl) =

1

(2π)n/2

∑
k∈Zn

f(k)

Corollary 6.2 (Poisson’s summation formula, second form)
Let f ∈ S.

1

hn

∑
l∈Zn

f̂(
2πl

h
+ ξ) =

1

(2π)n/2

∑
k∈Zn

f(k h)e−ihkξ

Definition 6.3 (band–limit)

1. Let f ∈ S. f is band–limited with bandlimit Ω iff f̂(ξ) = 0 for ||ξ||∞ > Ω.

2. Let f 2π–periodic. Then f is band–limited with bandlimit Ω iff f̂k = 0 for
|k| > Ω, f̂k the Fourier coefficients of f .

Definition 6.4 (band–limited, band–filtered version)
Let g ∈ S. Then

f(x) =
˜

(f̂(ξ)χ[−Ω,Ω](ξ))(x)

is the Ω–band–limited or Ω–band–filtered version of g.

Remark: Using

χ̂[−Ω,Ω](ξ) =

√
2

π
Ω sinc(Ωξ),
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we have

f(x) = Ω

√
2

π
(g ∗ sinc(Ω·))(x).

Remark: Equivalently for periodic functions.

Remark: f is the best approximation to g in the space of band–limited func-
tions.

Remark: If f is compactly supported, then f is not band–limited except
for f = 0. Proof based on Paley–Wiener. See e.g. Hardy 1933, A
theorem concerning Fourier Transform, Journal of the London Mathematical
Society (https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/
jlms/s1-8.3.227). Therefore:

Definition 6.5 (essentially band–limited)
Let f ∈ S. f is essentially band–limited with bandlimit Ω iff f̂(ξ) is negligible for
||ξ||∞ > Ω, or if f and its Ω–band–limited version are almost the same.

Example: The Ω–bandlimited version of g(x) = χ[−1,1] is given by

f(x) =
1

π
(Si(Ω(x+ 1))− Si(Ω(x− 1)))

where Si is the antiderivative of the sinc function (integral sine).

Example: The Ω–bandlimited version of the δ–distribution is given by

f(x) = Ω

√
2

π
sinc(Ωx).

Interpretation: An infinitesimally small dot will appear as a sinc function in the sig-
nal or image.

Corollary 6.6 to Poissons’s summation formula:

f̂(ξ) = (2π)−n/2hn
∑
k∈Zn

f(kh)e−ikhξ −
∑
l 6=0

f̂(
2πl

h
+ ξ).

Theorem 6.7 (sampling Theorem by Kotelnikov, Shannon, Nyquist, Wiener...)
Let f ∈ S Ω–band–limited.

1. If ||ξ|| > Ω, then f̂(ξ) = 0.
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2. Let ||ξ|| ≤ Ω, h ≤ π
Ω

. Then

f̂(ξ) = (2π)−n/2hn
∑
k∈Zn

f(kh)e−ikhξ.

So in this case f̂ and thus f is uniquely determined by its values f(kh), k ∈
Zn.
The trapezoidal rule for the Fourier integral is exact.

3. Let h ≤ 2π
Ω

. Then ∫
Rn
f(x) dx = hn

∑
k∈Zn

f(kh).

The trapezoidal rule for the integral is exact.

4. Let h ≤ π
Ω

. then

f(x) =
∑
k∈Zn

f(h · k) sinc
π

h
(x− hk).

5. Let f , g Ω–bandlimited, h ≤ π
Ω

. Then f · g is 2Ω–bandlimited.∫
Rn
f(x)g(x) dx = hn

∑
k∈Zn

f(kh)g(kh).

6. The sum converges arbitrarily slow, but can be accelerated by choosing h <<
π
Ω

.

In the following, we will implement 5.7. We will implement it in such a way that the
results are exact. We will always assume that the support of f is in the unit circle
and f is essentially Ω–bandlimited.

Lemma 6.8
Let V = δ or V̂ = (2π)−n/2. Then in 5.7 V ∗ f = f .
Let f Ω–bandlimited and V̂Ω(ξ) = (2π)−n/2 for ||ξ|| ≤ Ω. Then in 5.7 VΩ ∗ f = f .

Lemma 6.9
Let V = R∗v, v ∈ S(C). Assume that v is even and rotationally invariant, that is

v(θ, s) = v(s) = v(−s).

Then
V̂ (ξ) = 2(2π)(n−1)/2||ξ||1−nv̂(||ξ||).
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Remark: For V̂ (ξ) = (2π)−n/2 5.7 is 5.10, filtered backprojection.

From now on let

V̂Ω(ξ) = (2π)−n/2φ̂

(
||ξ||
Ω

)
, φ(σ) ∼

{
1, if |σ ≤ 1

0, otherwise
, VΩ = R∗vΩ.

Remark: We have f ∼ R∗(vΩ ∗ g) with equality for “=” in the definition of φ.

Remark: R∗(vΩ ∗ g) is always Ω–bandlimited (even if f is not). Think of it as a
projection onto the set of bandlimited functions. Note that the projection is not
orthogonal (due to aliasing, see below).

Remark: R∗(vΩ ∗ g) is continuous since v̂Ω is bounded.

Lemma 6.10

vΩ(s) =
1

2
(2π)−n

∫ Ω

−Ω

|σ|n−1φ̂
(σ

Ω

)
eisσ dσ.

Corollary 6.11

1. Let

φ̂(σ) =

{
1, if |σ| ≤ 1

0, otherwise.

and n = 2. Then

vΩ(s) =
Ω2

4π2

(
sinc(sΩ) +

1

Ω2s2
(cos(sΩ)− 1)

)
and vΩ(0) = Ω2

8π
. This formula is due to Ramachandran and Lakshminarayanan

(1971), vΩ is called the Ram-Lak filter.

2. Alternative choices for φ̂(σ) include sinc(σ π
2
) with a cutoff at 1. This was pro-

posed by Shepp and Logan (and again vΩ can be computed from 6.10). An-
other popular choice is cos(σ π

2
) with a cutoff at 1, the cosine filter.

We will now turn to implementation of parallel scanning. That was already defined
before 5.3. We measure g(θ(ϕk), sl) where

ϕk =
kπ

p
, k = 0 . . . p− 1; sl =

l

q
, l = −q . . . q.

We sum up the steps needed:

45



1. Select Ω and the parameters p and q for parallel scanning.

2. Select a filter function φ and compute v̂Ω.

3. Measure data g.

4. Compute g ∗ vΩ exactly.

5. Compute F = R∗(g ∗ vΩ) exactly.

We want to implement and select everything in such a way that F = f for Ω–
bandlimited f .

Note: We have discrete measurements, and all implementations are discrete, but
the result is analytically correct (neglecting measurement errors, of course). Addi-
tionally, the procedure is continuous.

Assume now that vΩ is Ram-Lak, supp f ⊂ K1(0), and f is essentially Ω–
bandlimited.

Lemma 6.12
g and vΩ are Ω–bandlimited. The trapezoidal rule for

(vΩ ∗ g)(θ, s) =

∫ 1

−1

vΩ(s− s′) g(θ, s′) ds′

is exact when q ≥ Ω
π

(6.7).

Lemma 6.13
Let

h(ϕ) = (vΩ ∗ g)(θ(ϕ), x · θ(ϕ)).

Then we have for its Fourier coefficients ĥk ∼ 0 for |k| > 2Ω.

In the Exercises you prove:

Corollary 6.14
Let p > Ω. Then

R∗(vΩ ∗ g)(x) =

∫ π

−π
h(ϕ)dϕ =

π

p

2p−1∑
j=0

h(ϕj).

Note: There is an error in the video at this point, for some reason I come up with the
wrong condition. You will prove that this is the right one.
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Corollary 6.15
Let f ∈ S(R2) Ω–bandlimited, p ≥ Ω, q ≥ Ω

π
. Then

f(x) = (VΩ ∗ f)(x) = 2
π

p

1

q

p−1∑
j=0

q∑
l=−q

vΩ(x θ(ϕj)− sl)g(θj, sl)

is an exact, continuous reconstruction formula and only uses discrete measurement
values from parallel scanning.

Remark: Assume that p and q are fixed. Then Ω = min(p, π q). This implies that
improving the number of measurement angles or sensors alone does not improve
resolution, we have to improve both. In the optimal case, we should have p = π q
(which we assume from now on).

Remark: Regarding the implementation of 6.14: Since f is essentially Ω–
bandlimited, we should sample it with a grid spacing of h = π

Ω
. Since f has com-

pact support, we must compute 6.14 for O(Ω2) values of x. For each value we must
compute the double sum, resulting in a complexity of O(Ω4).

This can be reduced with the following idea: Let

hj(s) =

q∑
l=−q

vΩ(s− sl)g(θj, sl).

Then

f(x) = (VΩ ∗ f)(x) = 2
π

p

1

q

p−1∑
j=0

hj(x θ(ϕj)).

hj is Ω–bandlimited, so it should be sampled with grid spacing h = π
Ω

. So before-
hand, we compute

hj(sk) =

q∑
l=−q

vΩ(sk−l)g(θj, sl).

This can be done using the convolution theorem and fast Fourier transform for each
j, resulting in a complexity of O(Ω2 log Ω).

f(x) is now computed by interpolating hj, using the computed values. To be exact,
we would have to use 6.7 for the interpolation. However, in practice, it suffices to
use simply linear interpolation. Usually, in implementations of the inverse Radon
transform (Matlab, python, ...) the choice of interpolation function is left to the user.
For linear interpolation, the complexity of computing f(x) is O(Ω), resulting in an
overall complexity of O(Ω3) for the backprojection step.
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All in all, with this simplification the complexity of filtered backprojection is
O(Ω3).

Remark: For Ram–Lak and q = Ω
π

, we have

vΩ(sk) =
Ω2

2π2


1
4
, if l = 0

0, if l 6= 0 even
1

π2l2
, otherwise.

Theorem 6.16 (sampling theorem by Petersen and Middleton)
Let f ∈ S(Rn). Let K the support of f̂ . Let W ∈ Rn×n such that

K ∩K + 2πW−tk = ∅ ∀ k ∈ Zn, k 6= 0, .

Then f is uniquely determined by the values of g(Wk), k ∈ Zn.

Theorem 6.17 (Natterer, Theorem 3.1)
Let g = Rf , f ∈ S(R2) Ω–bandlimited. Then the essential support K of the 2D–
Fouriertransform of g is given by

K := {(k, σ) : |σ| < Ω, |k| < |σ|}.

Note: g is 2π–periodic in the first variable, so the Fourier transform has to be under-
stood in the distributional sense, according to the exercises. Note that we will nev-
ertheless make use of 6.16, although we only proved that for functions in S.

Note: This is a simplification, the essential support is in fact a little bit bigger.

Corollary 6.18 (2D–sampling)

1. Let

W =

(π
p

0

0 1
q

)
, p = Ω, q =

Ω

π
.

Then 6.16 is satisfied. This results in parallel scanning.

2. Let

W =

(2π
p
−1
q

0 1
q

)
, p = Ω, q =

Ω

π
.

Then 6.16 is satisfied. Wk is a grid that has only half the points of the grid of
parallel scanning, thus uses less measurements, but still g is uniquely deter-
mined. This is called interlaced or efficient scanning.
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Chapter 7

3D CT

We only have a very small glimpse at true 3D scanning.

Definition 7.1 (Cone–Beam–Transform)
Let f ∈ S(Rn). Let a, x ∈ Rn. Then

(Df)(a, x) :=

∫ ∞
0

f(a+ tx) dt

is the Cone–Beam–Transform.

Theorem 7.2
In distributional sense, we have

D̂f(a, ξ) =

∫ ∞
0

ρn−2eiρ a·ξf̂(ρξ)dρ

where the Fourier Transform is with respect to the second variable.

Definition 7.3 (Tuy’s condition)
Let f ∈ S(R3). Let a(λ), λ ∈ [0, 1], a differentiable curve in R3. a satisfies Tuy’s
condition, if every plane that hits the support of f contains at least one point of the
curve, and the curve is not tangential to the plane in this point.

This boils down to: Let x ∈ supp f . Let θ ∈ S2. Then there exists λ(θ, x) such that

a(λ(θ, x)) · θ = x · θ, a′(λ(θ, x)) · θ 6= 0.

Theorem 7.4 (Tuy’s reconstruction formula)
If Tuy’s condition is satisfied, then f can be reconstructed from the values of

(Df)(a(λ), x), λ ∈ [0, 1], x ∈ R3.

49



In particular for x ∈ supp f :

f(x) = (2π)−3/2 1

i

∫
S2

(
1

a′(λ) · θ
d

dλ
D̂f(a(λ), θ)

)∣∣∣∣
λ=λ(θ,x)

dθ.

Note: Tuy’s condition is necessary for stable reconstruction. The simple geometry
of a circle around the object does not satisfy Tuy’s condition.

Remark: Definitely, FDK should be introduced here as an example (as in the old
lecture). Do this next time.
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Chapter 8

Stability of reconstruction formulas

Assume dimension 2.

Theorem 8.1 Assume that g̃ = Rf + n, noise n is an uncorrelated random variable
in measurement space with mean 0 and variance σ2. Let f Ω–bandlimited and v an
exact reconstruction filter (Ram–Lak).

Let

f̃(x) =

∫
S1

∫
R
g̃(θ, s)v(x · θ − s) dx dθ.

Then f̃ is a random variable with mean f and variance less or equal to Ω3

24π2σ
2.

Theorem 8.2 Let f ∈ S(R2), f = fΩ + f ∗Ω, fΩ the Ω–bandlimited version of f . Let
g̃ = Rf + n with noise n, ||n||2 ≤ ε. Let vΩ an exact reconstruction filter for Ω–
bandlimited functions (Ram–Lak). Then

||vΩ ∗ g̃||22 ≤
∫
S1

∫ Ω

−Ω

σ2|R̂f ∗Ω(θ, σ)|2dσ dθ︸ ︷︷ ︸
Aliasing

+ ||f ∗Ω||22︸ ︷︷ ︸
model error

+ 2Ω2||n||22︸ ︷︷ ︸
noise

.

Filtered backprojection is a regularization of projection type with regularization pa-
rameter 1/Ω.
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Chapter 9

Discretization, ART, Kaczmarz

A completely different reconstruction method is derived by simply discretizing. We
differentiate:

• Rf(θ, s) = g(θ, s) (continuous problem)

• Rf(θl, s) = g(θl, s) = gl(s) (semidiscrete form)

• Rf(θl, sl) = g(θl, sl) = gl (discrete form)

In image space, f is discretized as

f(x) ∼
∑
k

fkχk(x), fk ∈ R

with Ansatzfunctions χk. Typically, χk is the characteristic function of a pixel or
voxel or

χk(x) = e−λ||x−xk||
2/2.

We restrict these remarks to pixels in R2.

In the fully discrete Radon problem, we end up with an equation

Rf = g, R = (alk) , f = (fk), g = (gl)

where

alk =

∫
Ll

χk(x) dx, Ll = L(θl, sl).

For pixel ansatz functions, the system matrixR can be computed very efficiently, so
it is not stored but computed on the fly (Siddon/Bresenham).
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Since dimensions are large and the system matrix is sparse, we need iterative
methods. Since Landweber (page 18) is too expensive, we go for the Kaczmarz
method.

Definition 9.1 (Kaczmarz)
Let Rk : X 7→ Yk, k = 0 . . . p− 1, X, Yk Hilbert spaces. Solve

Rkf = gk, k = 0 . . . p− 1.

Let f (0) ∈ X. Choose ω fixed. Then the Kaczmarz method is defined by

f (l+1) = f (l) + ωR∗k(RkR
∗
k)
−1(gk −Rkf

(l)), k = k(l).

A typical choice for k is k = l mod p. In this case we call f (lp) the sweeps. The
effort for computing one sweep is roughly equivalent to computing one step in the
Landweber method.

Note that we quietly assumed that Rk is surjective. This is not needed in the gener-
alized Kaczmarz method.

Example: Let

R =

 Rt
0

...
Rt
p−1

 , Rk ∈ Rm, g =

 g0

...
gp−1

 .

The Kaczmarz method for the solution of Rf = g is then with k = k(l):

f (l+1) = f (l) + ω
gk −Rt

kf
(l)

||Rk||2
Rk.

Example: (semidiscrete tomography problem, parallel geometry):
Let (Rkf)(s) = Rf(θk, s). Find an image f such that (Rkf)(s) = gk(s), k = 0 . . . p−
1 ∀s ∈ R.

We restrict the Radon transform to functions with support in the unit circle, so

Rk : L2(K1(0)) 7→ L2([−1, 1]).

Then the semidiscrete Kaczmarz method (without discretization in image space) is
given by

f (l+1)(x) = f (l)(x) + ω
1

2
√

1− (x · θk)2
(gk(x · θk)−Rf(θk, x · θk))
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Theorem 9.2 (Convergence theorem for the general Kaczmarz method, Tanabe 1971)
Let Rk : X 7→ Yk, k = 0 . . . p− 1, X, Yk Hilbert spaces. Let gk ∈ Yk. Let

R =

 R0

...
Rp−1

 , g =

 g0

...
gp−1

 .

Assume ∃f ∈ X : Rf = g (consistency).
Let Ck : X 7→ X continuous and positive definite, and Ck ≥ R∗kRk in the sense that

(Cx, x) ≥ (R∗kRkx, x).

Let 0 < ω < 2 and f (0) ∈ X.
The general Kaczmarz method is then defined by

f (l+1) = f (l) + ωR∗kC
−1
k (gk −Rkf

(l)),

where k = k(l), we assume k = l mod p.
Let f (0) ∈ Ker(R)⊥, e.g. f (0) = 0.
Then f (lp) →l→∞ R+g, i.e. the sweeps converge towards the minimum norm solu-
tion of Rf = g.

Note: The numerical experiment showed that the order of the operators is important
for the convergence speed. For the Radon transform, we should choose the direc-
tions θj in such an order that subsequent iterations are as orthogonal as possible
to the ones before. To this end, clever ordering schemes were designed. However,
a simple random order will behave similarly efficient in practice.
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Chapter 10

Statistical Inverse Problems

Our main example for statistical problems is emission tomography. While this is
an inherently 3D problem (since emitted photons cannot be restricted to a plane
like in the CT case), for simplicity, we view it in 2D only. However, since we will be
considering discrete algorithms only, everything can simply be transferred to 3D,
apart from the numerical complexity.

10.1 Emission Tomography

In emission tomography, a (radioactive) tracer is injected into the body. The external
radioactivity is measured. The goal is to reconstruct the density f(x) of the tracer
inside the body. Since radiation is very low, single photons (rather than a constant
flow of photons like in CT) are measured. The photons are sent out by the tracer
at random, so by nature this is a random process which has to be modeled using
statistics.

Definition 10.1 (attenuated Radon transform, one-sided X-Ray transform)
Let f, µ ∈ S(R2). Then

D : S(R2) 7→ S(Rn × Sn−1), (Dµ)(x, θ) :=

∫ ∞
0

µ(x+ t θ) dt

is the one–sided X-Ray transform.

Rµ : S(R2) 7→ S(C), (Rµf)(θ, s) :=

∫
x·θ=s

e−(Dµ)(x,θ⊥)f(x) dx

is the attenuated Radon transform. Here, θ⊥ is the rotation of θ by π
2

such that
det(θ, θ⊥) = 1.
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Note: Other than for the Radon transform, in general we have

(Rµf)(θ, s) 6= (Rµf)(−θ,−s).

SPECT (Single Photon Emission Computerized Tomography): In the analytical model
for SPECT, the attenuated Radon transform of the tracer density f is measured in a
parallel geometry. µ is usually assumed to be known. However, even then analyt-
ical reconstruction apart from simple cases where the attenuation is constant (see
exercises) is difficult.

PET (Positron Emission Tomography): In the analytical model for PET, the Radon
transform of the tracer density f is measured. The geometry consists of all lines
connecting the sensors which are equally distributed on a circle around the object.
The attenuation µ is assumed to be known and can be corrected for beforehand. So
PET boils down to a CT measurement in an unusual geometry. However, the main
difference is that the measurements are statistical by nature.

For both cases, we will consider only discrete ART–like reconstruction formulas. This
is consistent with what is used in modern devices (traditionally, filtered backprojec-
tion was used for reconstruction ignoring the differences in the model).

The process of radioactive decay is modeled by the Poisson distribution.

Definition 10.2 (Poisson–distribution)
Let X the random variable for the number of (observed) decays of a radioactive
probe in a time interval of length T0. Let c the total radioactivity in the probe such
that

E(X) = cT0 =: λ.

Then for µ ∈ N0

p(X = µ) = e−λ
λµ

µ!
.

X is Poisson–distributed.

Note: Since the radioactive strength of the probe is reduced over time, c is in fact
time dependent. We ignore this for our model, in practice this is easily corrected for
with the half time known.

Theorem 10.3
Let X Poisson–distributed with parameter λ. Then

E(X) = λ

and
Var(X) = E((X − E(X))2) = λ.
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This leads to a statistical model for PET. Let Xl the random variable for the number
of decays on the line Ll in a time interval of length T0, l = 0 . . . L− 1. Assume that
the reconstruction area is divided into pixels and that the tracer density is given
by

f(x) =
∑
k

fkχk(x)

where χk is the characteristic function of pixel k. Further let al,k the length of the
intersection of Pixel k and line Ll. Then the total radioactivity on the line is given
by

cl =
∑
k

alkfk

(everything as in the ART case). So the expected value of Xl is T0cl. Since Xl is
Poisson–distributed, its parameter must be

λl = T0cl.

In the following, we set T0 = 1 so Xl is Poisson–distributed with parameter

λl =
∑
k

al,kfk.

This boils down to:

Lemma 10.4
The probability of having exactly gl decays on line Ll, under the assumption that for
the density f(x) of a radioactive tracer we have f(x) =

∑
k fkχk(x), is given by

p

(
Xl = gl

∣∣∣∣∣f(x) =
∑
k

fkχk(x)

)
= e−λl

λgll
gl!

where
λl =

∑
k

al,kfk.

Now let A = (al,k), X = (Xl), G = (gl), F = (fk). Then λl = (AF )l. Under the
assumption that the Xl are independent, we finally have

p

(
X = G

∣∣∣∣∣f(x) =
∑
k

fkχk(x)

)
= Πl

(
e−(AF )l

(AF )gll
gl!

)
=: LG(F )

(where χk, al,k etc. are as above).
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Now assume that a fixed vector G has been measured. Then for every vector F ,
LG(F ) is the probability of measuring G if the true radioactivity function is f(x) =∑

k fkχk(x).

We reconstruct by determining a vector F where the probability of actually measur-
ing G is high. This gives rise to two reconstruction ideas.

Definition 10.5 (Maximum Likelihood)
View F as a random variable. Then

fML = arg max
F

p(F |G is measured)

is the maximum likelihood approximation. For the PET case this means

fML = arg max
F

LG(F ).

Definition 10.6 (a posteriori) Bayes estimate
View F as a random variable. Then

E(F |G is measured)

is the Bayes estimate.

Note: In the literature, varying definitions are used.

10.2 Statistics Basics

We remind of some definitions from stochastics about multidmensional random
variables. In the following, X is a random variable in Rn with probability distribu-
tion p(X = x).

Definition 10.7 (mean, expected value)

E(X) =

∫
Rn
x p(X = x) dx

is the mean of X. E is linear, that is

E(AX + µ) = AE(X) + µ.

Definition 10.8 (covariance matrix)

cov (X) = E((X − E(X))(X − E(X))t)
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is the covariance matrix. The covariance matrix is positive semidefinite (we will as-
sume it is positive definite). When the off-diagonals are 0, the Xi are uncorrelated.
If the Xi are independent, they are uncorrelated. We have

cov (AX + µ) = A cov (X)At.

The diagonal entries of the matrix are the variance (in a noise model, the size of the
noise), the off–diagonals stand for the connection between random variables (in a
noise model, this should be zero).

Definition 10.9 (normal distribution)
For a positive definite Matrix Σ ∈ Rn×n and a vector µ ∈ Rn, the normal distribution
is defined by

p(X = x) := (2π)−n/2
1√

det Σ
e−

1
2
||Σ−1/2(y−µ)||2 = (2π)−n/2

1√
det Σ

e−
1
2

(y−µ)tΣ−1(y−µ).

We have cov X = Σ and E(X) = µ. The standard normal distribution is given by
Σ = I and µ = 0 ∈ Rn.
Note (I forgot to mention this in the video): Obviously, if X is normally distributed,
then Bx+ c is normally distributed.

Definition 10.10 (conditional probability)
Let X = (X1, X2). Then the probability that X1 = f provided X2 = g is given by

p(X1 = f |X2 = g) :=
p(X = (f, g))∫

p(X1 = x,X2 = g) dx
.

Theorem 10.11 (conditional probability for normal distributions)
Let X normally distributed with cov (X) = K, E(X) = µ.
Let

X = (F,G), µ = (f̃ , g̃), K =

(
K11 K12

Kt
12 K22

)
, F ∈ Rn, G ∈ Rm

where K11 ∈ Rn×n etc.
Then p(F = f |G = g) is normally distributed with respect to f for fixed g with mean

f̃ +K12K
−1
22 (g − g̃)

and covariance matrix
K11 −K12K

−1
22 K

t
12.
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10.3 Bayes– and ML–estimates for inverse problems

Theorem 10.12 (Bayes–estimate for normally distributed random variables with
noise)
Assume f ∈ RN is a random variable, normally distributed with covariance matrix
F and mean f (image).
Let A ∈ RM×N (observation/measurement operator).
Assume n ∈ RM is a random variable, normally distributed with covariance σ2 I and
mean zero (noise).
Assume thatn andF are uncorrelated. Then (f, n) is normally distributed with mean
(f, 0) and covariance (

F 0
0 σ2I

)
.

Let g = Af + n (measurement). Then

X =

(
f
g

)
=

(
I 0
A I

) (
f
n

)
is a random variable in RN+M . X is normally distributed,

E(X) =

(
f

Af

)
, cov (X) =

(
F FAt

AF AFAt + σ2I

)
=:

(
K11 K12

Kt
12 K22

)
.

Assume that g̃ was measured, a realization of g. Then

fBayes = E(f |g = g̃) = f + FAt(AFAt + σ2I)−1(g̃ − Af).

Assuming f is uncorrelated, F = I:

fBayes = f + At(AAt + σ2 I)−1(g̃ − Af)

= f + (AtA+ σ2I)−1At(g̃ − Af).

Note that, since f |g = g̃ is normally distributed, from the definition of normal distri-
bution we have fML = fBayes.
The Bayes estimate is a generalization of Tikhonov–regularization in this very spe-
cial case.

Now we do this for emission tomography.

For the following, assume that f ∈ RN is an image, A ∈ RM×N is a measurement
operator. g ∈ RM is a Poisson distributed variable with E(gi) = (Af)i, g̃ is a
realization of g (a measurement). According to 10.4, the log–likelihood function is
given by

l(f) = logL(f) =
∑
i

g̃i log(Af)i · (Af)i −
∑
i

log(g̃i!).
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Theorem 10.13 (EM algorithm, Kuhn–Tucker–conditions)
Let

fML := arg max
f≥0

l(f).

Then
0 = fML · (∇l)(fML) = fML · At

g

AfML

− fML · At1

and

fML = fML ·
1

At1
· At g

AfML

.

Here, the vector division and multiplication is componentwise, and 1 is a vector of
ones in Rm.
The fixpoint algorithm for this equation

f (k+1) = f (k) ·
(

1

At1
· At g

Af (k)

)ω
converges towards fML provided ω is small enough. This is called the EM (Expecta-
tion Maximization) algorithm.

Replacing multiplication by addition and division by subtraction, this looks very
much like Landweber. So it makes sense to consider a Kaczmarz–like algorithm to
speed up EM (which is notoriously slow), where in each iteration, only a subset of
the data and the equations is used. This is called OSEM (Ordered Subset Expec-
tation Maximization). In a way, it is a multiplicative version of the ART–algorithm,
also called MART (multiplicative ART), in a slightly different notation.

Since a couple of years, OSEM/MART is the standard algorithm for solving the
emission tomography problem in clinical devices. Up to that point, filtered
backprojection–based algorithms were used.
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Chapter 11

Applications

11.1 MRI

In Magnetic Resonance Imaging, the Fourier transform of the solution is measured
directly (where in the simplest case, the function is the proton density of the
body).

The measured function is

g(t) =

∫
R2

f(x, y, z0)µ(x, y)eiω0t+xGx t+y·GyT dx dy

where f is the proton density, µ is the attenuation dependent on the distance
between coil and (x, y), ω0 is the Larmor frequency without gradient field in the
(x, y, z0)–plane,Gy is the strength of the gradient field in y direction, T is the length
of the pulse in y direction,Gx is the strength of the field in x direction. (In the video,
I have set µ = 1 for simplicity.)

So we get

f̂µ(Gx t, Gy T, z0) =
e−iω0t

2π
g(t).

Now varying Gy, the Fourier Transform of f can be measured everywhere. Typically,
in each single measurement the Fourier Transform on a line (or path, by changing
Gy during the measurement) can be computed.

Theorem 11.1
The inverse problem of MRI is well–posed (due to Parseval), assuming full measure-
ments.
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Theorem 11.2 (Radial sampling)
Assume that f̂(σk, θl) has been measured with MRI for equidistant σk and θl. Then,
due to Fourier Slice, we have that

f̂(σk θl) = R̂f(θl, σk).

So parallel geometry Radon data (Rf)(θl, σk) can be computed by inverse Fourier
Transform and the image can be computed using filtered backprojection.

11.2 Ultrasound: Inverse Scattering

In inverse scattering, an object is irradiated by an incoming wave, generating a scat-
tered wave. The scattered wave is measured outside of the object. The goal is to
reconstruct the sound speed from the scattered wave.

We view the time–harmonic problem. Let U(x, t) the sound pressure of the total
wave, U = U i + U s, U i, U s are the incoming and scattered waves, respectively.
Assume that the time–dependence is given by eiωt, so

U(x, t) = eiωtu(x)

etc. Since U(x, t) satisfies the wave equation

c(x)2∆U(x, t) =
d2U

dt2
(x, t)

we have

∆u(x) +
ω2

c(x)2︸ ︷︷ ︸
k(x)2

u(x) = 0

(and a boundary condition (radiation condition) at infinity). This is the Helmholtz
equation.

Assume that c(x) = c0 is constant. Then there is no scattered wave, thus u = ui

which means that ui must satisfy the equation

∆u(x) + k2u(x) = 0

where k = ω/c0. Specifically, the generated incoming waves in devices are mod-
elled as plane waves in direction θ ∈ S1 given by

uiθ(x) = eikx·θ.
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In general, we assume that the sound speed is constant (=c0) away from the body
and varies slightly inside the body, so we have

k(x)2 = k2(1 + q(x))

where q(x) is a function with support inside the body which represents the differ-
ence between sound speeds inside the body and the outside.

In the inverse scattering problem, we try to reconstruct q given measurements of
the scattered wave us outside the body for various (all) directions θ of incoming
waves.

The measurement operator is given by

M : L2(K1(0)) 7→ L2(S1 × S1), (Mq)(θ, ψ) = usθ(ψ)

and usθ is the scattered wave generated by the incoming wave uiθ.

u satisfies the Helmholtz equation, which is (affine) linear for fixed q (or fixed u).
However, since q and u are unknown in the interior in our case, the dependency of
us on q is non–linear.

Therefore, in the simplest case the Born approximation is used instead.

Theorem 11.3 (Lippmann–Schwinger–Equation)
Let u = ui+us a solution to the nonhomogeneous Helmholtz equation with contrast
function q(x) and support in the unit circle. Then

us(x) = k2

∫
K1(0)

q(x)u(x)G(x, y) dy

where G(x, y) is Green’s function for the Helmholtz equation with radiation condi-
tion.
In R2, G(x, y) = H0(k||x− y||) where H0 is the Hankel function of order zero.

Definition 11.4 (Born–approximation)
Let everything as in 11.3. Then

us(x) = k2

∫
K1(0)

q(x)u(x)G(x, y) dy

is the Born approximation for the time harmonic inverse scattering problem. It ap-
proximates the true solution for small q.
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11.3 Analytical inversion for diffraction tomography (Born

approximation)

Definition 11.5
The term inverse crime refers to the habit of testing an algorithm with artificially
generated data that was produced using the (possibly unrealistic) same assump-
tions as for deriving the algorithm.

Examples include solving the inverse scattering problem with data produced in the
Born approximation and then applying an algorithm that only works for the Born ap-
proximation, or simply using exactly the same program for producing the data and
computing the inverse. If at all possible, analytical solutions to the base problem
should be used for testing.

Theorem 11.6 (Green’s function for the Helmholtz equation with radiation condition
in 2D)
Green’s function for the radiation condition in 2D is given by

G(x, y) = H0(k||x− y||)

where H0 = J0 + iY0 is the Hankel function of zero order, J0 and Y0 are Bessel
functions of the first and second kind, the base solutions for the Bessel equation.

Theorem 11.7 (Wolf’s projection theorem)
Let uiθ(x) = eikxθ with θ fixed (for the moment) the incident plane wave in direction
theta. Let uB the Born approsximation of the scattered wave for this incident field
and a contrast function q. Let

g(θ, s) := (Rq)(θ, s) := uB(Lθ + s θ⊥)

where

uB(Lθ + s θ⊥) =
k2i

4

∫
K1(0)

H0(k ||Lθ + s θ⊥ − y||) q(y) eikθ·y dy.

and |L| > 1 fixed. This is the measurement of the incident field behind (L > 0,
transmission measurement) or before (L < 0, reflection measurement) the object.
Let

a(σ) =

{
±
√
k2 − σ2, if |σ| ≤ k

±i
√
k2 − σ2, otherwise

where the ± is chosen as the sign of L. Note that a is real in the first and purely
imaginary in the second case. Then

R̂q(θ, σ) = i

√
π

2

k2

a(σ)
ei|L|a(σ) q̂((a(σ)− k) θ + σ θ⊥).
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Korollar 11.8
Assume that ĝ(θ, σ) is measured for all θ ∈ S1 and |σ| ≤ k.
For fixed θ, q̂ can be computed on a sphere of radius k around −kθ. For L > 0, the
part of the semicircle containing the origin can be recovered, the rest from L < 0
(Ewald–sphere).
Let L > 0 (transmission measurement). Then using data for all θ ∈ S1, q̂(ξ) can be
computed from this data for ||ξ|| ≤

√
2k.

Let L < 0 (reflection measurement). Then using data for all θ ∈ S1, q̂(ξ) can be
computed from this data for 2k ≥ ||ξ|| ≥

√
2k.

If measurements for both L and −L are available, then q̂(ξ) can be computed from
this data for ||ξ|| ≤ 2k.

So the obtainable resolution is limited in the frequency domain by 2k. This is known
as the diffraction limit and corresponds to the Nyquist rate.

Korollar 11.9
In a sense, the projection theorem is a generalization of Fourier slice for smaller
wavelength. For ω →∞, the part of the sphere that is computed from transmission
turns into a line through the origin in direction θ (as in Fourier slice). u has to be
scaled by the incoming wave for the factors to vanish (Take v = 1

k
u
ui

, the projection
theorem is often found in the literature in this form).

11.4 Solving nonlinear inverse problems with the Kaczmarz

method

In this section, we look at a numerical method for solving inverse problems that
involve a variant of Kaczmarz and a Newton–like algorithm. Note that other than in
the Born approximation, we are solving the full nonlinear problem here. No conver-
gence results are given, and we do this on an example only.

We rewrite the inverse scattering problem as an initial value problem. This can be
done using the analytic solution of the Helmholtz equation in the exterior of S1 in
the previous chapter. Again, we look at everything in 2D. Our setting is:

For θ ∈ S1, uθ is a solution to the perturbed Helmholtz initial value problem

∆uθ + k2(1 + q(x))uθ = 0, uθ|L1 = f0,
∂

∂ν
uθ|L1 = f1

where L1 is a line perpendicular to θ before the object, i.e.

L1 = {−Lθ + sθ⊥, s ∈ R}, L > 1.
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As usual, we assume that supp q ⊂ K1(0).
For the data, we measure uθ on a line L2 behind the object (transmission measure-
ment), i.e.

(Rq)(θ, s) := (Rθq)(s) := gθ(s) = uθ|L2(s) = uθ(Lθ + sθ⊥).

As before, Rq is nonlinear (since it contains the products of the unknowns q and
uθ).
In the inverse problem, we search for a common solution q of the equations for a
given measurement,

(Rθq) = gθ, θ ∈ S1.

This is exactly the situation of 9.1. Again, our iterative scheme is: Given a current
guess q(l), select a fixed θk and update q(l+1) = q(l) + dq using only the equation for
θk.

Unfortunately, 9.1 only makes sense for linear operators. As in Newton’s method,
we linearize Rθ at the current guess, that is

Rθ(q
(l) + dq) ∼ Rθq

(l) + (R′θ(q
(l)))dq, dq small.

where R′θ(q
(k)) is a linear operator. Note that the difference to the Born approxima-

tion is that we take the linearization not for q small (linearization around zero), but
for dq small (linearization around q(l)).

Then the nonlinear Kaczmarz method, for discrete θk and Rk = Rθk , reads (very
informal definition):

Definition 11.10 (nonlinear Kaczmarz)
Let Rk : X 7→ Yk, k = 0 . . . p − 1, X, Yk Hilbert spaces, Rk (possibly) nonlinear.
Solve

Rkf = gk, k = 0 . . . p− 1.

Let f (0) ∈ X. Choose ω fixed. Then the nonlinear Kaczmarz method is defined by

q(l+1) = q(l) + ωR′k(q
(k))∗(R′k(q

(k))R′k(q
(k))∗)−1(gk −Rkq

(l)), k = k(l).

Here, R′k is a linearization of Rk, e.g. the Frechet–derivative.

The nonlinear method shares many properties of the linear method. Again, it is
very efficient, and the inner inversion is usually replaced by an approximation (a
constant times the identity matrix).

To apply it, it remains to compute the derivative and its adjoint. In the following, we
fix θk and write R := Rθk for clarity.
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Theorem 11.11
For the model problem,

R′(q)dq = d̃u|L2

where d̃u is the solution to the initial value problem

∆d̃u+ k2(1 + q(x))d̃u = −k2u dq, d̃u|L1 = 0,
∂

∂ν
d̃u|L1 = 0

and u is the solution to the initial value problem

∆u+ k2(1 + q(x))u = 0, u|L1 = f1,
∂

∂ν
u|L1 = f2.

Observe that obviously this is linear in dq.

Remark: The notation is justified, in appropriate spaces,R′ is the Frechet derivative
of R.

Theorem 11.12
The adjoint of the derivative is given by

R′(q)∗ g = −k2u v

where u is as above and v is a solution to the initial value problem

∆v + k2(1 + q(x))v = 0, v|L2 = 0,
∂

∂ν
v|L2 = −g

(with respect to L2).

Now we have everything set up, and Kaczmarz can be applied.
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